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Abstract

This study investigated the use of Wavelet Neural Networks (WNN) for signal approx-

imation. The particular wavelet function used in this analysis consisted of a summation

of sigmoidal functions (a sigmoidal wavelet). The sigmoidal wavelet has the advantage of

being easily implemented in hardware via specialized electronic devices like the Intel Elec-

tronically Trainable Analog Neural Network (ETANN) chip. The WNN representation

allows the determination of the number of hidden-layer nodes required to achieve a desired

level of approximation accuracy. Results show that a bandlimited signal can be accurately

approximated with a WNN trained with irregularly sampled data.

vii



Signal Approximation with a Wavelet Neural Network

L PROBLEM STATEMENT

1.1 Introduction

Maintaining an accurate assessment of the electromagnetic environment expected in

modern conflicts is a challenging task. Part of the problem lies in the large number of

signals occupying the same frequency spectrum making the job of detecting and tracking

specific emitters difficult. Real-time processing of the resulting data could exceed the

processing capabilities of current monitoring systems. Another concern based on today's

technology is the possibility of a system time-varying its emitted signal. Any time variation

in the signal significantly complicates the task of tracking such an emitter using traditional

detection and identification techniques. A promising development in solving the real-time

data processing problem is the artificial neural network (ANN). Because of the parallel

architecture of an ANN, its theoretical capability to process data is much higher than

conventional signal processing techniques. An ANN does not, by itself, solve the problem

of tracking time varying signals, however, a popular area of recent research in the analysis

of time-varying signals is the Wavelet Transform (WT). The combination of ANNs and

the WT presents a possible solution to this overall problem. This thtsis examines the

implementation of a Wavelet-based ANN for performing signal approximations as a first

step toward ultimately performing signal detection. identification and classification with a

Wavelet Neural Network (WNN).

1.2 Background

This section provides a short background in the areas of artificial neural networks

and the wavelet transform.

1.2.1 Artificial Neural Networks ANNs are based on simple models of the biolog-

ical neuron and have been widely studicd in many areas of science aid engineering. Like

1



the highly intertwined neuron cells, a general ANN architecture can be highly intercon-

nected and consist of many layers of interconnected nodes. Node outputs can be calculated

independently in the same layer, and thus the claim of a parallel architecture. The other

important characteristic of neural networks modeled oil biological neurons is the ability to

generalize. The generalization property of ANNs refers to "'the ability of the network to

use its training data to deal with the real world events not in the training data." (13)

Neural networks are usually trained using one of two general methods: supervised

training where training data is labeled as to which class it belongs, and unsupervised

training where the neural network arranges it nodes based oil the unlabeled training data.

The primary interest for this thesis is the supervised training algorithms. A wide variety of

applications have been analyzed using ANNs including radar emitter identification, speech

recognition. and stock market prediction. to name just a few (13). Several problems

that have proven extremely difficult using conventional analytical techniques have been

solvable using ANNs. Research efforts at the Air Force Institute of Technology (AFIT)

on identifying and classifying electronic signals with neural networks are reported in (4)

and (17).

1.2.2 Wavelet Transform Several important signal analysis techniques, including

multiresolution analysis, can be represented in terms of the WT. The basic idea of the WT

is similar to the Short Time Fourier Transform (STFT) or Windowed Fourier Transform

(WFT). The WT and STFT buLh "slice" a signal into smaller sections and operate on each

section separately. The major differences between the WT and STFT are that the kernel

function for the WT is much less restricted (not limited to a specific function like the

complex exponential of the Fourier Transform) and the window function of the WT varies

in size. The varying window of the WT is assumed to be an advantage because real-world

time-varying signals can be composed of relatively long-lived low frequency components

and relatively short-lived high frequency components which may be difficult to analyze

with the fixed window of the STFT. Because there are relatively few restrictions on the

kernel function of the WT, many wavelet kernel functions are possible and it is generally

suggested to choose a kernel function which 'looks" like the functions being analyzed.
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Some of the promising areas of research involving wavelets have been in the areas of data

compression and image processing and tile topic has generated considerable interest in

many fields of study.

1.3 Summary of Current Kaowledge

The fundamental theory of the WNN on which this research is based has been re-

ported by Pati and Krishnaprasad (11). Their work involves a neural network that performs

function approximation and demonstrates a neural network based onl wavelet transforma-

tions has several desirable properties. These properties will be discussed further in Chapter

2. but the basic ideas are listed here: 1) the number of nodes in the single hidden layer

of the network can be accurately computed (this is generally selected heuristically in most

neural networks) and 2) two-thirds of the weights of the neural network are precomputed

and set to constants so that training only involves the layer of weights from the hidden

layer to the output layer. The weights from the input to the hidden layer of the WNN are

predetermined based on the chosen wavelet transform as well as the bandwidth and time-

bandwidth product of the signal being analyzed. The weights from the hidden layer to

the output layer are learned and represent the projection coefficients of the signal onto the

wavelet function. Another aspect of (11) to be continued in this thesis is the particular neu-

ral network architecture used that is easily implemented in hardware. Choosing a wavelet

function composed of a summation of signioidal functions allows the use of new computer

chips that function as artficial neural networks with sigmoidal activation functions (3).

1.4 Problem

The basic problem to be analyzed for this thesis is to approximate real-world time-

varying electronic signals with a WNN. The goal is perform initial work that could lead

to ultimately developing a neural network architecture that sufficiently characterizes time-

varying electronic signals for the tasks of detection, identification. and classification.
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1.5 Scope

This research is limited to developing a WNN in software and to evaluating its

performance in approximating real-world data. The particular wavelet transform chosen to

be implemented in this study. composed of summing sigmoidal functions, has the advantage

of being easily implemented in hardware. The data ',et used for testing the usefulness of

the wavelet neural network is real-world data, obtained from the Avionics Directorate of

Wright Laboratories. Wright- Patterson AFB. OH.

1.6 Approach/Methodology

The first step in this thesis will be to the review the theory of WNNs. The next step

will be the implementation of a WNN in software that performs function approximation.

This will be followed by investigating the performance of the WNN in approxixn'-ting real-

world signals.

1. 7 Conclusion

The order of presentation of this thesis will be first to review the literature in the areas

of artificial neural networks, wavelets, and WNNs in Chapter II. Next are explanations of

neural networks, wavelets. and WNNs as they pertain to the problem statement to be

discussed in Chapter III. Chapter IV contains the results achieved in this effort. Chapter

V contains the conclusions and recommendations for further research in this area.
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II. LITERATURE REVIEW

2.1 Introduction

This chapter reviews recent literature in the area of combining the topics of artificial

neural networks and wavelets for the purpose of function approximation and prediction.

The combined subject is referred to as Wavelet Neural Networks (WNNs) in this thesis

and as Wave-Nets by one of the authors in this field (1).

2.2 Artificial Neural Networks

2.2.1 Function Approximation and Hidden-Layer Nodes A single hidden layer net-

work with sigmoidal activation functions is all that is needed, given sufficient nodes. to

perform any arbitrary transformation as shown by Cybenko (5): however, multiple layers

are generally used because of faster training (13). The ANN configuration necessary to

achieve a "close" approximation of a function may require a very large number of nodes.

In general. no technique exists for determining the number of hidden-layer nodes required

for a given level of performance. The experimenter usually starts with a small number of

nodes in the hidden-layer and increases the number until the desired level of performance

is achieved.

2.2.2 Hyperplane and Kernel Classifier Neural Networks As summarized by Za-

hirniak (17), both Hyperplane and Kernel Classfier neural networks can approximate any

multivariate function based on the Cybenko theory. Hyperplane Classifer neural networks

generally use superposition of sigmoidal functions to achieve an approximation of a func-

tion. The Hyperplane Classifier is also referred to as a global classifier because the decision

region is not restricted to the training data and may over-generalize. Kernel Classifier neu-

ral networks, such as the radial basis function classifier, use overlapping kernel functions

that create local decision regions. The Kernel Classifier trains faster than the Hyperplane

Classifier but may not generalize well for data unlike that used in the training set.
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2.3 Wavelets

2.3.1 Time-Frequency Resolution A principal motivation for using the WT is its

ability to examine transient signal phenomena not possible with the Short-Time Fourier

transform (STFT), the classical method for studying non-stationary signals (6). The vary-

ing time-frequency resolution of the WT contrasts with the time-frequency resolution of

the STFT which has a fixed resolution for all frequencies. The justification for using the

wavelet transform over the STFT is because signals of practical interest may be composed

of short-duration, high-frequency components and long-duration, low-frequency compo-

nents (12).

2.3.2 Filter Banks Filter banks and multiresolution signal analysis were theoret-

ically linked to wavelet analysis by Mallat (9). In terms of signal analysis. it is often

convenient to think of wavelet analysis in terms of a "constant-Q" bandpass filter bank

(12). Constant-Q, or constant relative bandwidth, filters can be found in biological pro-

cesses like the auditory system (16).

2.4 Wavelet Neural Networks

As discussed above, Hyperplane Classifier ANNs are typically constructed using sig-

moidal functions (or hyperbolic tangent functions) as non-linear activation functions. By

representing a feedforward ANN as groups of summations of sigmoidal activated nodes

to form wavelet transformations. Pati and Krishnaprasad have developed a function ap-

proximator that uses sigmoidal activation functions but represents a Kernel Classifier (11).

Unlike most ANN architectures, it was shown in this paper a method for determining the

number of nodes required in the hidden layer of a two-layer ANN by using the bandwidth of

the signal and the time-bandwidth product to achieve a desired level of approximation. Be-

cause the wavelet basis functions used in this article were constructed by summing sigmoid

functions this architecture has the advantage of being easily implemented in hardware.

Wo,.- by Bakshi and Stephanopoulos showed results similar to (11) but used an

ANN with orthonormal wavelet activation functions (1). The authors use the term"Wave-

Net" to describe the resulting ANN which is a feedforward neural network with a single
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hidden layer. A coarse approximation is first achieved using nodes with the wavelet scaling

functions as activation functions and refined approximations are achieved by adding nodes

with the appropriate wavelet activation functions. Using orthogonal wavelets as basis

functions, rather than other standard orthogonal basis functions. has the advantage that

wavelets are localized in time and frequency. This localization is important in terms of

neural networks because global (non-localized) activation functions have been found to

train slowly and do not guarantee convergence. The other advantage to using wavelets is

the multiresolution property of the function representation. meaning variable resolutions

of the input data are permissible while still explicitly representing the function. However,

the use of orthonormal wavelets would not be as easily implemented in hardware as the

wavelets used in (11).

From Mallat's work, it is known that the approximation of a function using wavelets

can be represented in terms of the projection and the detail at a particular resolution (9).

In the hidden-layer of the Wave-Net, the projections are obtained using what the authors

term "scaling function nodes- and the details are obtained from the "wavelet nodes" (1).

This representation is somewhat different than (11) where non-orthogonal wavelets are

used, no detail coefficients are computed, and only projection coefficients are learned.

The method presented in (1) is to use the coarsest approximation possible for the scaling

function nodes and train the network until the training data are "'overfitted" (this means

to train until the error starts to increase). The approximation error is further reduced by

adding the wavelet nodes until the desired approximation error is achieved. Wavelet nodes

with small weights can be eliminated to reduce the dimension of the resulting network. The

methods of (11) and (1) both allow the input data be irregularly sampled. i.e., the training

data can be sampled at a different rate than the test data and the function. Irregularly

sampled data is not as well accomodated in other types of wavelet analysis such as the

Mallat algorithm.

2.5 Conclusion

This chapter reviewed recent work in the areas of ANNs and wavelet analysis as

related to the topic of WNNs in performing function approximation and prediction. The
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wavelet theory applied to ANNs provides a method for calculating the number of hidden

layer nodes required to achieve a desired level of approximation accuracy in the function

approximation. Other benefits of the WNNs discussed are the use of sigmoidal activation

functions which can be easily implemented in hardware and approximating a function

with irregularly sampled training data. The work of Pati and Krishnaprasad will form

the foundation of the the thesis. In particular, the use of a wavelet composed of summing

sigmoidal functions will be maintained for the purpose hardware implementation.
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III. THEORY AND PROCEDURE

3.1 Introduction

This chapter introduces the topics of artificial neural networks (ANNs) and wavelets

as they apply to the approximation and classification of time-varying signals. As described

in Chapter II, it has been shown that wavelet analysis can be used to describe the process

by which the ANN approximates a function. This chapter begins with a short description

of linear and non-linear ANNS and the typical feed-forward ANN. The discussion then

shifts to the Wavelet Transform by first introducing the Fourier Transform (FT) and the

Short-Time Fourier Transform (STFT). Of importance in this area is the idea of using basis

functions. or "building blocks" to represent signals which allows relevant information about

the signal to be more easily examined and may dramatically simplify certain mathematical

operations. Time-frequency analysis is the other major idea covered in this section on the

WT. Overcoming the lack of time information in the FT and the fixed time-frequency

resolution of the STFT was the main motivation for the development of the WT.

3.2 Artificial Neural Networks (ANNs)

3.2.1 Linear ANNs The single-layer ANN is referred to as the perceptron from

Widrow's work in the early 1960's (13) and is represented by the diagram in Figure 1.

Each element of the input vector t is multiplied by a weight. When the activation function

of the ANN is linear, then the node output is simply the scaled sum of the weighted inputs

to the node. The resulting network can be represented in terms of a matrix equation.

Considering the activation function f(x) = x, the input x, and the output y, then the

equation for the linear network can be written as

y = Ax (1)

where A is the matrix of weights {w 1 1 , w2 1, .... wj } for i inputs and j outputs. Using matrix

algebra, it is possible to find the psuedo-inverse of A denoted as A. A has the following

9
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Figure 1. Single Layer Perceptron. (a) Actual configuration (b) Short-hand Notation
Version
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properties (15):

A = A-` if A is square and non-singular (2)

AA = I where I is the identity matrix (3)

A = (ATA)-'AT if A has full column rank (4)

3.2.2 Non-Linear ANNs Non-linear activation functions are commonly used which

model biological neurons in that the output has a maximum value and is limited to some

range. A popular choice for the activation function is the so-called sigmoid function which

is defined as:

1
s(t) = 1 (5)

Another typical non-linear functions used as an activation function is the hyperbolic tan-

gent function, tanh(t), which can be viewed as a sigmoid function shifted and scaled along

the y-axis. A plot of the sigmoid and hyperbolic tangent functions is provided in Figure 2.

Besides better modeling biology, the non-linear ANN provides solutions to a more general

set of problems than the linear ANN.

125
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Figure 2. Sigmoid and Hyperbolic Tangent Functions
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3.2.3 Feedforward ANNs A feedforward neural network is an ANN in which all

the connections are made in the direction from the input toward the output. The com-

mon method for training the feedforward neural network is referred to as the backward

propagation algorithm or just backprop. Backprop training is a method for adjusting the

weights of the ANN beginning with the weights of the output layer and working backward

toward the input layer. Modification of the weights is accomplished by calculating the

output of the ANN for a given input and comparing the actual output with the desired

output. The weights of the input to the output layer are then modified to minimize the

cost function that represents the difference between the actual and desired outputs. The

procedure is repeated for each layer of nodes in the network until the weights of the input

layer are adjusted. The backprop algorithm is described in (13). It has been shown that

the ANN is actually learning the Bayesian classification which removes some of the "black

box" mystique of the ANN solution and how it is achieved (14).

3,3 Wavelet Analysis

The goal of this section is to introduce the topic of wavelet analysis and a few

of the important differences of the wavelet transform with the standard time-frequency

analysis techniques. The discussion begins with the basic tool of signal analysis, the

Fourier Transform (FT).

3.3.1 Fourier Analysis The spectrum, or frequency content, of a signal is found by

taking the FT. The FT pair is defined as the following:

F(w) f j (t)e-jwtdt (6)

f(t) - 0 F(w)ei"dw 
(7)

Most real-world signals meet the conditions required for using the FT (as long as the

signal is absolutely squared-integrable on the infinite interval (-00, +oo) (7). Mathemat-

ically, the FT provides a description of the signal in the frequency plane by representing

12



the signal in terms of an infinite number of weighted complex exponential basis functions

(sometimes referred to as analyzing functions).

Closely related to the FT is the Fourier Series (FS) for periodic signals which is

defined as

f(n) =• cne-jwo (8)
neZ

The basis functions for the FS are also the complex exponential functions. Any well-

behaved function can be represented in terms of an infinite sum of complex exponentials,

which form an orthonormal basis set.

3.3.1.1 Properties of the FT The magnitude and phase of the FT can be

represented using the notation

F(w) = A(w)e-je(w) (9)

The magnitude of the FT is an even function and the phase is an odd function.

A(w) = A(-w) (10)

e(w) = -e(-w) (11)

Also useful in the discussion to follow is Parseval's Identity which states the signal

energy in the time domain equals the spectrum energy in the frequency domain.

If(t)12dt = 2r + IF(w)12dW (12)

The complex exponentials used as the basis functions in the FT are infinite in du-

ration which makes the Fourier transform unable to provide information about when a

particular frequency component occurs in the signal. That is, the Fourier transform is a

convenient analytical tool when the signal of interest is stationary (not time-varying). If

the signal of interest is time-varying, a particular frequency component of the FT may

13



occur at any time during the period of analysis. The time of occurrence of particular

frequency components can be extremely important in many types of signal analysis. As an

example, a musical score provides the timing and length of notes as well as the particular

notes to use. Without both the time and frequency information, a musical score would not

be of much use to the musician.

3.3.2 Short- Time Fourier Transform (STFT) The first technique developed to pro-

vide time-frequency information is referred to as the Short-Time Fourier Transform (STFT)

or Windowed Fourier Transform (WFT). Time localization is achieved by windowing or

"slicing" the signal of interest into small intervals of the total time and taking the FT of

each interval. Shifting the window changes the interval of time in which the FT is taken.

Alternatively, the STFT can be viewed as taking the infinite duration complex exponentials

of the FT (which provide the frequency localization) and multiplying by a finite duration

window function (which provides the time localization). Thus, the STFT provides both

time and frequency localization. The STFT is the standard technique for time-frequency

analysis and is defined as the following:

STFT(w) = f f(t)g*(t - r)e-JWt dt (13)

where g(t) is the window function. Various window functions are used depending on the

application with some of the more common windows being the Hamming and Harning

(10). When a Gaussian windowing function is chosen, the STFT is referred to as the

Gabor transform which has received considerable interest in research. Because the Fourier

Transform of a Gaussian function is another Gaussian function, the Gabor transform per-

forms Gaussian windowing in both time and frequency domains and is well-localized in

both time and frequency. Other windows well localized in time and frequency are possible.

If both the time and frequency domain windows are concentrated around zero, then the

STFT can be "loosely" interpreted as the "content" of the signal near a time t and near a

frequency w (6).

From a mathematical perspective, the STFT can be represented in terms of basis

functions where the finite duration of each time interval requires a summation of translated
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windows to "cover" the entire time line. Often, the overlap of the windows is chosen to

minimize the resulting distortion to the original signal. An alternative view to considering

the STFT as representing a signal in terms of weighted basis functions is to consider it a

modulated filter bank. The filter bank approach, developed in digital signal processing,

represents the STFT as group of filters whose frequency range is determined by the window

function g(t). Which of the two views to choose when using the STFT depends on the

type of analysis being performed and the properties of the STFT that are being exploited.

Important properties to be considered are discussed in the following section.

3.3.2.1 Properties of STFT The window size of the STFT is fixed; thus, there

is a lower bound on the time-frequency resolution that can be achieved. The uncertainty

principle states the time-bandwidth product, AtA must be

1(14)

with the Gabor Transform (Gaussian window) providing the minimum time-frequency

resolution. When analyzing signals where various frequency components are of interest, a

frequency resolution of A,, may be sufficient for one frequency component in the signal,

but not for others. The STFT can be considered to have a fixed window length in time

that looks at all frequencies, or as a fixed window length in frequency that looks at all

time as shown in Figure 3. What is desired is a set of basis functions where the time-

frequency resolution varies; a variable time-frequency resolution is more representative

of real-world signals in which low-frequency components are relatively long lived, while

high-frequency components are relatively short lived. The solution to the variable time-

frequency resolution is the Wavelet Transform (WT). Although both the STFT and the

WT provide a description of f (the signal of interest) in the time-frequency plane, the WT

provides a similar time-frequency description with a few important differences (6) which

are discussed in the next section.

3.3.3 Wavelet Transform Whereas the STFT has a fixed window length that is

translated to the proper time location and results in a fixed frequency resolution, the WT

15
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Figure 3. Time-frequency plane of the STFT (12)
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has a variable width window which can be narrow in time for high frequencies and wide

in time for low frequencies. As previously mentioned, the variable window width of the

WT better matches time-varying signals. The first requirement in using the WT is to

find a valid mother or basic wavelet which has windowing properties in both the time and

frequency domains. The variable time-frequency resolution of the wavelet transform is

achieved by dilating and translating the basic wavelet function, O(t).

t - b(15)

where a is the dilation parameter and b is the translation parameter. The WT uses

logarithmic shifts of the mother wavelet.

Typically, the dilation parameter. a, is chosen to be 2 resulting in octave dilations

and the translation parameter. b is taken to be integers; the Continuous Wavelet Transform

is then defined as

W,mn(a,b) = 2-1 f(t)2-"0(t - inb)dt (16)

The admissability condition for a function. V"(t) to be called a mother wavelet is that

the Fourier transform of Vl(t). %I,(w). satisfy

f I¢I(w)I 2
Sd( = C, < - (17)

The admissibility condition implies that the wavelet function. V)(t) meet the condition of

zero average energy

] P(t)dt = 0 (18)

The characteristic shape of the tinie-doniain plot of wavelet functions led to the naming

of this class of functions as "-wavelet" by a group of French researchers (12).

3.3.4 Frames A candidate mother wavelet does not necessarily form a frane. The

necessity to generate a frame occurs due to the requirement to 'cover" the entire line in the

17



time and frequency domains. If each translation of the dilated mother wavelet is shifted

too far, then "holes" could develop in the coverage. Daubechies presented the necessary

conditions to ensure a set of wavelet functions formed a frame (6). The first step in

constructing a frame from the candidate mother wavelet is to describe the time-frequency

localization of the function. The first parameter of interest is the center of localization in

both the time and frequency domains. In the time domain, the center of the localization

can be defined as

tC = 171 ] tjf(t)12 dt (19)

Similarly, the center of localization in the frequency domain is defined as

2 i 10 1W2 wIF(w )12dw (20)

where only the positive center frequency is needed because the magnitude of the Fourier

Transform is an even function. Using Parseval's theorem,

11f112 = 1 IIFII2 (21)

the positive center frequency can be rewritten as

1 I wIF(w)12 dw (22)

The support of a function f is denoted by supp(f) which represents the set for which

the absolute value of f(t) is greater than zero. or matheniatically. the closure set {t :

If (t)I > 0}. If the function is always nonzero (such as a Gaussian function). then the area

of localization for both time and frequency domain can be defined as an epsilon-support

where the function gets arbitrarily close to zero. {t :I f(t) I > c}. Because the support, of

some candidate mother wavelets is always non-zero over (-sc. +-c). an alternate definition

is used called the epsilon energy support. The epsilon-support is a method for defining

the interval over which the energy in the signal is contained except. for an arbitrarily small

epsilon amount. where epsilon represents a small number. Because the candidate mother
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wavelet is assumed an odd function in the time domain (can always be made to be an odd

function since a mother wavelet must satisfy the zero-average energy condition), the center

of concentration in time is zero such that t, - to = t, + t1 , or to = -t 1 . One way of defining

the interval over which a function is concentrated in terms of its energy is to find the

energy contained inside the interval [to, ti] symmetric about the center of concentration, t'

resulting in

fI 2--- I I(t)I~ dt + j If(t)12dt < E (23)

lifi j If(t)12dt > 1 - c (24)

What is sought is the smallest interval containing (1 - E) of the total energy of the function.

The epsilon support will be used to approximate the function to a desired level of accuracy.

As E --* 0, the approximation of the function, f(t), will approach f(t) (in terms of energy)

with the difference being arbitrarily small. The interval defined by a particular epsilon

support gets larger as epsilon gets smaller (inverse relationship provided f has infinite

extent). The epsilon energy support is defined as the smallest interval [t0 , tl] which satisfies

1 t

E,-SUpp(1) = I•)(t)I 2dt > 1 -, (25)

In the frequency domain, a somewhat different definition for the epsilon energy sup-

port is required. The idea is to find the symmetric interval [w0.wj] around the center

frequency such that

Ifl2 1o IF(w)dw > 1 - , 
(26)

where u50 and wl are equally spaced around w, and wo is the maximum of [0. L0]. Only

the positive frequencies are considered which results in an epsilon energy support of the
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smallest interval of [wo, wI] which satisfies

'supp(O)= 2 I=kII2 1  I(t)I2df > 1 - 6, (27)

With the epsilon support defined, it is possible to continue the task of defining a

frame. In general, the dilations and translations of the mother wavelet create a set of

functions [(0, a, b)] which is written as

= aV, (a2 t - mb) (28)

where m is an integer and n is any positive integer. As previously noted, dyadic dilations

axe generally used (a = 2) which results in the dilations being separated by octaves

O,, = 2fO(2"t - mb) (29)

What is not known at this point is whether a frame can be generated by the mother

wavelet. The mathematics for generating frames require that

m(4', a) =i1nf { I,(al~w)K 1wI E [1, a]} > 0 (30)

M(V),a) = SUP{11:P(ayw) IwI E [1, a] <cc (31)

lim2 Z_3(k/b)½I3(-k/b) = 0 (32)
b-0

k=I

where

0(s) = SUP E 1(anw) I 1(a71w - s) I 1wI E [1, a]} (33)

where inf is the infimum (largest lower bound) and sup is the supremum operator (smallest

upper bound) (6). Assuming a frame does exist. the next step is a matter of calculating

SIh(a"w)12 for w E [1. a] (34)
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and plotting

2 E_ /(k/b) 2/2( -k/b)1/ 2  (35)
k#0

for various values of b as shown in (11). The translation parameter b is selected as the

value which makes Equation 35 equal the result of Equation 34.

The dilated and translated functions defined in Equation (29) are affine wavelets

where the term affine refers to the fact the transformation does not map zero in the time

domain to zero in the wavelet transform domain. The wavelet transformation used here

is termed discrete because the continuous function ,(t) is dilated at integer multiples n.

A finite length, bandlimited signal to be analyzed will only exist over part of the time-

frequency space defined by examining the frequency spectrum and time-bandwidth product

of the signal. The bandwidth of the signal determines the required dilations of the mother

wavelet needed to represent the signal. The time-bandwidth product provides the required

translations.

3.4 Wave-Nets

The discrete wavelet representation as described by

f( M = E E Cmn~mn M) (36)

mcZ ntZ+

can be computed in a ANN which has a single input and single output (SISO). The basic

architecture is shown in Figure 4. As discussed in (11), the integer dilations and trans-

lations can be predetermined based on the frequency bandwidth and the time-bandwidth

product of the signal f(t). A solution to finding these coefficients is to have a ANN "learn"

them. Using a gradient descent backpropagation algorithm, an ANN can be trained to

find the coefficients within some desired level of accuracy. The basic idea is that the SISO

ANN accepts a time value as ail input with the output an approximation of the original

signal at the input time. During training. the coefficients are adjusted up or down so that

the approximated value approaches the actual value. The approximation to the signal can
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x

Figure 4. Single-Input. Single Output ANN Architecture
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be represented by

M N

f() M E E Cmnn'bmn(t) (37)
m=-M n=0

where the tk .n(t) represent the dilations and translations of the mother wavelet and the

cm, are the wavelet coefficients. The coefficients of the approximated signal outside its

time-frequency space would be approximately zero since it would be outside the time and

frequency support of the wavelet functions.

3.5 Summary

This chapter introduced the topic of WNNs by relating the areas of ANNs and wavelet

analysis. Signal approximation can be performed with a SISO network with wavelet hidden-

layer activation functions. The network weights from the hidden-layer to the output are

learned and represent the projection coefficients of the signal being approximated. The

next chapter shows the implementation of a particular mother wavelet composed of a

summation of sigmoidal functions and the results of approximating signals with a hardware

implementable WNN.
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IV. RESULTS

4.1 Sigmoidal Wavelet

The first task at hand is to find a candidate mother wavelet function. The sigmoidal

function is typically defined as the following:

1
s(t) + e-ql

A wavelet can be generated by combining sigmoids in the proper manner. Two sigmoidal

functions are combined as follows

=(t) s(t + d) - s(t- d) (38)
1 1-- (39)

1 + -q(t+d) + 1 e-q(t-d)

The resulting function, plotted in Figure 5 with q = 2 and d = 1, fails to meet the

requirement of a mother wavelet having zero average energy.

0.5 
1

0.4 1-1

0.3-

0 .2 .. .. ..

0.1 j___

Figure 5. Combination of Two Sigmoidal Functions
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By combining two 0-functions in the following manner, a candidate sigmoidal mother

wavelet is obtained.

0(t) = 0(t + p) - 0(t - p) (40)

and substituting with the sigmoid functions results in

1 1 1 1
+ 1 + e-q(t-d-p) 1 + e-q(t-d+p) 1 + e-q(t+d-p) + 1 + e-q(t+p+q) (41)

Letting q = 2, d = 1, and p = 1 gives three terms

1 2 1
1 + e- 2 (t- 2 ) 1 + e-2+ 1 + e- 2 (t+ 2 )

The function V; is shown in Figure 6. Obviously the function 0(t) has zero average

energy and satisfies the conditions discussed in Equations 17 amd 18 of Chapter 3 for the

candidate mother wavelet.

Sigmoidal Wavelet - Time Domain
2.0-

1.01 -c: -_-__-__-__- __- __- __- ___-

0.51

0--

.1.0 ..... .I. .. .... a

-2.0---------------.---

"-5 -4 -3 -2 "1 0 1 2 3 4 5

Time

Figure 6. (a) Candidate Sigmoidal Mother Wavelet. (b) First term of Equation 42. (c)
Second term of Equation 42. (d) Third term of Equation 42.
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The Fourier Transforms of the functions 0 and 7P can be calculated using complex

analysis (see Appendix A for details) and results in

4)(W) = f (t)e-'"dt - 21r sin(wd)
i qsinh(!) (43)

%k(w) = e-j'4"(w) - e'-I(w) (44)

-j47r sin (wd) sin (wp) 1 (45)
q sinh (•)

The magnitude of the Fourier Transform of the candidate sigmoidal mother wavelet ¢ is

plotted in Figure 7. Note the shape of the Fourier Transform results in a bandpass filter

as expected for discrete wavelets (6).

4.5

3.5

3-

S2.5 . .

05

.0001 .001 .01
Log Frequency

Figure 7. Fourier Transform of Candidate Sigmoidal Mother Wavelet, T(w)

As pointed out in (11), a candidate mother wavelet does not necessarily result in

a frame. The necessity to generate a frame occurs due to the requirement to -cover"

the entire line in the time and frequency domains, therefore, sufficient translations must

be used to meet the requirement for a frame. However, it is desirable to have as few

translations as necessary to generate a frame because each translation, as will be seen.
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results in an additional node in the WNN. The epsilon energy support of the sigmoidal

mother wavelet, using Equation 23, is the smallest interval of [to, tj] which satisfies

et-supp(O) = 1 I1(t)12 dt < et (46)
P11I to

For et = 0.1, the epsilon energy support is [-2.15,2.15]. In the frequency domain,

'(w) is an even function and requires a somewhat different definition for the epsilon energy

support. Recalling the epsilon energy support as defined in Equation 27 as

"-sup~P) = 2I2 L I? IF (W)I12dw < E, (47)

For an c, = 0.1, the epsilon energy support of the sigmoidal mother wavelet is

[0.292, 1.592]. With the epsilon support defined, it is possible to continue the task of

defining a frame as outlined Chapter 3. The next step involves solving Equations 30 and

31 for the sigmoidal wavelet. Performing the calculations results in m(4, a) = 7.88 > 0

and M(4, a) = 8.01 < 0 (11). Therefore, a frame does exist, it is now a matter of selecting

the value for b. The maximum value for this translation parameter was calculated in (11)

to be b = 0.57.

4.2 Wavelet Neural Network

4.2.1 Network Architecture The required dilations and translations of the mother

wavelet for representing a signal are determined by analyzing the area in the time-frequency

space in which the signal lies. For a signal bandlimited to some range [wm,,j, Wmaz] and

existing over a finite interval [t,,.,l, tmaz], the resulting area is as shown in Figure 8 (only

positive frequencies are shown.) Choosing the appropriate dilations and translations to

",cover" that area in the space results in the specifying the the range of dilations and

translations. The bandwidth of the signal determines the number of dyadic dilations

(constant-Q filters) required to represent the signal. Taking the w,,ar and W,,i,, of the

signal and dividing by the epsilon-support in the frequency domain of the mother wavelet
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Figure 8. Time-Frequency Region for Approximation

provides the necessary information of what dilations are necessary along the frequency line.

2"°wo(i/,) _< wm.. (48)

2 n, .,(V) _ ) (49)

Once the required dilations are determined, the range of frequencies covered by the dilations

will be at least as big as the bandwidth of the signal, so

[2"fw 0(Vk),2"'u,(0)] Ž_ [wm, ,wmaz] (50)

An example calculation follows: Given a signal limited to the frequency range of 5 to 15

Hz. determine the number of dilations of the sigmoidal mother wavelet required to fully
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approximate the signal. For c, = 0.1, then the epsilon-support is defined by the following

Wo(?) = 0.292 (51)

W1(1) = 1.592 (52)

we(i) = 0.9420 (53)

The bandwidth of the signal being approximated is 31.416 radians to 94.248 radians. Only

one dilation is required for this bandwidth as shown in Table 1.

The method for determining the number of translations of the mother wavelet re-

quired is directly related to the dilations to be used and the interval of time desired for

the approximation. The epsilon-support of the sigmoidal wavelet in the time domain is

defined by

t0(V) = -2.15 (54)

t(t) = 2.15 (55)

to(C) = 0.0 (56)

For an approximation of 0.3 seconds duration of the signal referred to above where only

the sixth dilation is required results in the center time and time span interval as shown in

Table 2.

Table 1. Frequency Domain Parameters for Example
n12" 2"wo(Vb) 2"w,(O) 2"w,(O)
6 64 18.688 101.888 60.288

Table 2. Time Domain Parameters for Examplen 2-11 2 t(, 2,t() 2 1t(O
6 0.015625 -0.03359 0.03359 0

29



The number of hidden-layer nodes required for approximating a signal is determined

by summing the number of translations for each dilation. Because dyadic dilations are

used, it is also possible to calculate the total number of nodes using multiples of the

number of translations of the smallest dilation. For example, if 10 translations of the

3rd dilation (smallest) are required, then 2 times the number of translations required for

the 3rd dilation, or 20 translations, are required for the 4th dilation, 4 times the number

translations for the 3rd dilation are required for the 5th dilation, and so on.

4.2.2 Software Implementation Implementing the Wave-Net in software involved

changing the activation functions of a linear feed-forward ANN to represent the translated

and dilated sigmoidal wavelet functions. This was accomplished by modifying code written

in the C-language by D. Zahirniak and published in his master's thesis (17). Each node

in the hidden layer was given an activation function to represent a particular dilation and

translation of the mother wavelet.

4.2.3 Sampling of Training and Testing Data It is important to realize at this point

that the output of a trained linear ANN can be calculated using matrix operations. In

addition, it is possible to use matrix equations to explicitly solve for the coefficients if

regularly spaced sampling of the function f(t) are used (or assumed). Backpropagation

training is a solution for finding the coefficients even if the sampling is irregularly spaced.

Another advantage to the ANN representation of this approximation problem is that the

sampling rate and intervals of the training data for learning the coefficients and the test

sampling rates and intervals do not have to be the same. That is, the ANN could be trained

using data sampled at one rate and accept an input for determining the approximation at

a different sampling rate.

4.2.4 Approximation Results

4.2.4.1 Test Signals The signal approximation method using the sigmoid

wavelet basis functions was first used to approximate a sum of two sinusoids to repeat
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the results in (11) where

f(t) = sin(21r5t) + sin(27rlOt) (57)

was sampled over the period of 0 to 0.3 seconds. Using the range of frequencies between

5 and 10 Hertz requires the sixth dilation of the mother wavelet as discussed above. The

number of translations required to represent this signal is the length of the signal divided

by epsilon support of the 6th dilation of the mother wavelet. For this example, 40 dilat us

were required. Fifty randomly spaced samples of the function f(t) were used to train the

neural network.

3
Actual Signal

2 Training Data o

Net Output +

0

04

-2

-3 I I

0 0.05 0.1 0.15 0.2 0.25 0.3
Time

Figure 9. Approximation of Two Sinusoids

Further tests were conducted to verify the WNN's ability to learn sinusoids requiring

different dilations of the mother wavelet Ls well as signals with a random spectrum limited

to a chosen bandwidth. The random spectrum of the signal for this caLse was randomly
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chosen between 5 and 200 Hz requiring the 6th, 7th, and 8th dilations of the mother

wavelet. The approximation of this signal is shown in Figure 10.

Random Frequencies 5 - 200 Hz
5-

4- Legend

3-, 0 train~dat, Curve 1
Stest~dat Curve I

2- Aculual Signal]

-21
.3

-4

0 T.02 e.00 0.675 0.;00 0.125

Timne

Figure 10. Approximation of Random Frequencies between 5 and 200 Hz

4.2.4.2 Real- World Signals The next step undertaken was to determine if the

WNN could approximate real-world time-varying signals. An example of time sampled data

obtained from the Wright Avionics Laboratory is shown in Figure 11. A Hilbert Transform

routine in MATLAB was used to obtain the envelope of each signal resulting in signal

pulses like that shown in Figure 12 where the samples of interest are highlighted. Further

processing of the resulting envelope signal involved keeping only the first 64 samples of the

envelope after a 3 dB threshold was exceeded. The Fourier Transform of the 64 samples

was then used to determine the bandwith of the envelope signal. The first approximation

of the signal was chosen to include the first 12 of the 32 Fourier coefficients. The 12 Fourier

coefficients corresponded to dilations of the mother wavelet from 0 to 6. The number of

translations necessary to represent the signal resulted in 156 hidden nodes in the WNN

such that 156 projection coefficients were learned.
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Figure 11. Sampled Signal of a Pulsed Carrier Frequency

The approximations appear to be low-pass filtered versions of the original envelope

signal. As additional dilations of the mother wavelet are added to the WNN, higher

frequencies components are approximated and the approximation more closely matches

the original signal. As an example, including the 7th level of dilations in the WNN results

in the approximation more closely matching the actual envelope than only including the 0

through 6 dilations as shown in Figure 13.

4.3 Hardware Implementation

The Intel ETANN chip uses a symmetric sigmoidal activation function that can be

defined as the hyperbolic tangent function tanh(t). This function can also be used to

generate a mother wavelet equivalent to the mother wavelet of Equation 39.

2
-(t) + - 1 (58)

1 3 e-a
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Figure 12. Envelope of Typical Signal After Hilbert Transform

with a wavelet function generated in a similar manner to Equation 41 resulting in

2

)= * [6(t + d) - 6(t - d)] * [6(t + p) - b(t - p)] (59)

4(t) = 2,0(t) (60)

where ik(t) is defined in [41] and 6(t) is the dirac delta function. Using the Fourier Trans-

form property that cf(t)+cF(w) where c is an arbitrary constant, then

.8ir1

(w) = -j -8- sinwdsinwp ih (61)

q

The resulting function of Equation 59 has the same &-energy support in the time and fre-

quency domains as the mother wavelet developed in Equation 42 and all other calculations

apply to the new wavelet function as well. Thus. the symmetric sigmoidal wavelet can

be implemented in the ETANN hardware with no modifications to the previous develop-

ment. The implementation just described still requires four hidden-layer nodes for each

translation of each dilation required in the function approximation.
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Figure 13. Approximation of Signal with Varying Numbers of Dilations

An alternative formulation for the mother wavelet , which uses only two hidden-layer

nodes for each translation and dilation, can be represented by using

2 1 (1 ~-t- ) -.(I-+ e-q 1) (62)

2 2
2-- (63)

1 + e-q' 1 + e-'(6

which, letting q, = 1 and q2 = 2. is plotted along with the original sigmoidal wavelet in

Figure 14. Lowering the number of nodes is important because the ETANN chip has a

maximum of 64 total nodes per chip in a single chip implementation and eight chips can

be interconnected using the Intel development board for a total of 512 total nodes (3).

The new mother wavelet function is slightly less concentrated in the time domain than the

original mother wavelet, where the c-energy support for c = 0.1 is [-2.345.2.3451. The

Fourier Transform for the wavelet of Equation 63 is

-j2r( 1 1 )'I() --~ I,- _(64)

q, sinh (q2 sinl •(

35



which is plotted in Figure 15.
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Figure 14. Sigmoidal Wavelet Functions Comparing the Symmetric Sigmoidal Wavelet of
Equation 63 with the Sigmoidal Wavelet of Equation 42

Referring again to the SISO ANN described earlier in Figure 4, the hardware config-

uration would involve loading a set of weights to represent

Al N

f(t) = E Z cvirnn M(t) (65)
,ii=-M n=0

where V;,n(t) = a,) (a" t - Mob) (66)

and the activation function of the output layer is linear. Note that t represents the single

input. The equation representing the network configuration referenced to the output. say

g(t), of the hidden-layer nodes can be written as

f(t) = 'w2.jgYi) (67)

where the subscript on w represents the jth node in the second layer of the network. The

output of the hidden-layer can be represented in terms of the network input, the first layer
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Figure 15. Magnitude of FT of Symmetric Sigmoidal Wavelet

weights, and the hidden-layer activation function, that is,

gj(t) = h(wjt +1,3) (68)

where h(.) is the activation function of the hidden layer and /P, is the bias of the jth hidden

node. Equating terms from Equations 66 and 68 yields

mb = 1 j (69)

a"t = w13 t (70)

V(-) = h(.) (71)

Therefore. uw*j represent the dilations and f3j represent the translations of the mother

wavelet. Because V represents the summation of four sigmoidal functions, it is necessary

to add an additional layer of nodes to the SISO network of Figure 4. Letting the weights

from second hidden layer to the output layer be a0 and setting the weights between the
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hidden layers to 1 and -1 as shown in Figure 16 results in a WNN architecture that can

be implemented in hardware like the ETANN.

LINEAR I I LINEAR

n/2 arV2 2 aNa2 V q=2

a a a *q=2
q=1.,,,

-mb -mb -mb '~-mb _SIGMOIDAL m-rmb._rb SIGMOIDAL

an -2 an an
.an• -an

LINEAR 2 +0 -2+2 t

t

(a) (b)

Figure 16. Hardware Implementation for Sigmoidal Wavelets Illustrating Reduced Num-
ber of Hidden-Layer Nodes for the Two-Term Sigmoidal Wavelet Representa-

tion: (a) Wavelet from Summation of Three Sigmoidal Functions, (b) Wavelet
from Two Symmetric Sigmoidal Functions
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The results of this research demonstrated:

"* The sigmoidal wavelet is useful for representing real-world bandlimited signals.

"* The Wavelet Neural Network (WNN) can learn to approximate bandlimited signals.

The research also verified the following conclusions:

"* The wavelet representation of an ANN for approximating a function allow the number

of required nodes to be calculated explicitly.

"* The weights from the input layer to the hidden layer can be fixed once the time-

frequency space in which the function resides is determined. This property greatly

reduces the number of weights that must be learned.

"* Non-uniformly sampled data can be used to train the WNN to achieve good approx-

imations.

5.2 Recommendations

Several areas in which this research topic could continue are

" Using the learned projection coefficients to experiment with a large class of signals.

"* Investigate neural networks (or some other real-time or near real-time method) for

determing the projection coefficients directly rather than having to learn them. This

capability would allow the coefficients to be loaded into a feedforward ANN for

classification.

" A problem that requires the approximation and/or interpolation of another bandlim-

ited signal. This could also include three-dimensional functions.
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Appendix A. Fourier Transforms of Sigmoidal Wavelets

A sum of four sigmoids generates a wavelet function as discussed in Section 4.1. This

appendix provides the derivation of the Fourier Transform of the resulting wavelet which

is required to calculate the epsilon-energy support in the frequency domain. The sigmoid

function is defined as

1
s(t) = (72)1 + e-91

Subtracting two shifted sigmoid functions gives

=(t) s(t+d)-s(t-d) (73)
1 1-- 1 - (74)

1 + e-q(t+dj + e-q(t-d)

which can be written as

() 1 q- -t[6(t + d) - 6(t - d)] (75)

where "*" indicates the convolution operation. Writing the time-shifted sigmoids as a single

siginoid function convolved with delta functions simplifies the derivation of the Fourier

Transform that follows. A wavelet function is generated from Equation 75 by letting

(M) O= ¢(t++p)-¢(t-p)

0(t) [6(t + p) - 6(t - p)]

-- 1*[6(t + d) - b(t - d)] * [6(t + p) - 6(t - p)]1+ e-91

Letting q = 2 and d = p = 1 results in

1 2 1
_(t)1+

2 + (76)
1 + e-2(t-2 1 + e-2 1 + e-2(1+2)
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Taking the Fourier Transform of 0(t)

'1(w) = j (t)e-jidt (77)

and using the Fourier Transform property that h(t) * g(t)-.-H(w)G(w) results in

T(w) = -4sin(wd) sin(wp) f 1 e+ wt dt (78)

Notice that taking only the integral part of the above equation results in the Fourier

Transform of the original sigmoid function given in (72).

S(w) = j 1+ e-jwdt (79)

The function S(w) cannot easily be evaluated using the usual methods of real integral

calculus, thus, complex analysis is needed. To evaluate the integral, first it is written as

R ir__1 e 1 e"dz f q1 eq zdz (80)
J- R 1 + ~ qe- iwtt .T 1 ,-e~-q - S 1 + e-qz

where CR = [-R, R] U SR is a closed contour transversed in a counterclockwise direction

and SR is the semicircle in the upper-half plane with radius R centered at the origin as

shown in Figure 17.

If the integrand of the first integral of Equation 80 has singularities at points inside

CR, but is otherwise analytic, then the integral can be evaluated using the Residue Inte-

gration Method (8). Substituting z = -R(cos0 + jsin0) = -Rej' for z E SR into the

second integral yields

-- f = [1 eiwRcos Oe RsinO Re'j0 dO (81)

'SR 1+ eq- J 1 + eqRcos0ejqRsinO

Observe that
f r e -°Rsin0 jd f e -wR sin

J 1 + eq'icu'e 0 )qd sm 0" + <qRcos jqR (82)
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On the interval 0 < 0 < 7r/2, 0 < cos 0 < 1 so eqRc°.O > 1 thus

11+ e9R csOs ejqRsinO I > eqRcosO -_ 1 > 0 (83)

On the interval 7r/2 < 07r, -1 < cos0 < 1 so eqRcosO < 1 thus

11 + eqRcosO ejqRsinI 1 > 1 - eqRcosO > 0 (84)

Therefore,

e -wRsin 0 R < /
2 e -wRsin R .+ r e -Rsin R

1o 11 + eqR°os°ejqRsinedO <- 1 eqRcosO - 1dO + / 1 _ eqRcosOdO (85)

Taking the limit as R -- oc yields that both integrals converge to zero. The resulting

integral to be evaluated is

dz (86)
+ e-q:
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Replacing z by -( gives

I dz= f --- d( ejw( d (87)

CR 1 -+ e-9- C CR

where -CR is the contour CR transversed in the clockwise direction. Replacing ( by z

results in

f(z) = e (88)
1 + eqz

Because multiple singularities of f (z) are contained within the contour of integration, the

Residue Theorem states (8),

n

f (z)dz=j2lrZ Res f(z) (89)
ic ~k=1l~z

To use the Residue Theorem, it is first necessary to find the singularities, i.e., where f(z)

is not analytic which occur when

1 + eqz = 0 (90)

or, equivalently, when e7' = -1. Solving for z, we obtain

qz = j7r(2n+1)fornEZ={ .... -2-1.0.1,2....}

j7r
z = 3-(2n+ 1) forn E Z (91)

q

Since the integration contour as shown in Figure 17 is over the upper-half plane. then only

positive integers of n are contained within the closed contour resulting in

z= (2n + 1) n t EZ+ ={0,1, 2,...} (92)
q
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Residues from singularities inside the integration contour are included in the summation

when calculating the residues.

+R+27rN/q N-1
limr f(z)dz = urn f(z)dz = lir j21r E Res f(z) (93)

R--R I- J -2wN/q N-co n Z=zn

The particular f(z) for this case is of the form

_ g(z) (94)h(z))

where g(z) $ 0 and h(z) has a simple zero at z = Zo (h(zo) = 0 and h'(zo) 0 0). Therefore,

z0 is a simple pole of f(z) and

Res f(z)= lim (Z-zo)g(z)- g(zo)(95)Z=Z- Z-:o h(z) h'(zo)

Substituting for g(zo) and h(zo) results in

N-i

lim j27r e =e 27rZe (96)
N-0o n qeq 3 qeJT( 2

n+l)n=O qqn n=O e

Rearranging and recalling that eji( 2n+I) = -1 results in

f f(z)dz= e_(2n+l)z (97)C(~d q ,=o

From the CRC Standard Mathematical Tables (2),

sinha = 2Ze(-2n+1)) for Re(a) > 0 (98)

Therefore, the Fourier Transform of the sigmoidal function is

cf(z)dz = j ri 1 for q >0 (99)qsinh • q
q
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and the Fourier Transform of the sigmoidal wavelet is

Tl(w) (-4sin(wd)sin(wp)) q J inh l > 0

-j4ir 1
=- - sin wd sin wpsinhi (100)

q q

The Fourier Transform of a wavelet generated by symmetric sigmoids can be derived from

Equation 100. Recall the symmetric sigmoid is defined as

2
-(t) = 2 1 (101)

1 + e-qV

with a wavelet function generated in a similar manner to Equation 76 resulting in

2 1 + eq t * [6(t + d) - 6(t - d)] * [6(t +p) - b(t -p)] (102)

Using the Fourier Transform property that cf(t)L--vcF(w) where c is an arbitrary constant,

then

(W) - sin wd sin h wp (103)

A wavelet generated from only two symmetric sigmoids by varying the factor q is

given by

S= 2 2= + -e-q,t 1 + -e-q9 (04

For this case. the Fourier Transform is

(w) =_ ( 1 1 (
jq sinh -• qý2 sinh (105)
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